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Abstract

Sleep efficiency (SE) is a critical indicator of sleep quality and is associated
with various health outcomes, including cognitive performance and mood regula-
tion. This study investigates the relationship between sleep macrostructure param-
eters—total sleep time (TST), sleep onset latency (SOL), wake after sleep onset
(WASO), and rapid eye movement latency (REML)—and SE in a sample of 29
healthy adults. Using high-density polysomnographic data, we identified key pre-
dictors of SE through multiple regression analysis. The results indicate that TST
is positively associated with SE (r = 0.76, p < 0.05), while both SOL (r = -0.33, p
< 0.05) and WASO (r = -0.73, p < 0.05) are negatively correlated with SE. REML,
however, did not show a significant relationship with SE. Regression diagnostics,
including variance inflation factor (VIF) analysis and Q-Q plots, supported the va-
lidity of the model, with no severe multicollinearity detected after removing highly
correlated predictors (Sex and Age). This research enhances the understanding of
the key determinants of sleep efficiency in healthy adults and provides a foundation
for future studies examining clinical populations. The findings have implications
for sleep medicine, behavioral interventions, and the development of personalized
sleep improvement strategies.

Keywords: EEG, high-density EEG, polysomnography, REM latency (REML), sleep

efficiency, sleep macrostructure, sleep onset latency (SOL), statistical modeling, total

sleep time (TST), wake after sleep onset (WASO)

1 Introduction

Sleep is a fundamental biological process that plays a crucial role in cognitive function,

physical health, and overall well-being. One of the key measures of sleep quality is sleep

efficiency (SE), which represents the proportion of total time spent asleep relative to the

1



total time spent in bed. High sleep efficiency is associated with better cognitive perfor-

mance, improved mood regulation, and lower risks of various health conditions, including

cardiovascular diseases and metabolic disorders (Hirshkowitz (2015)). Conversely, low

sleep efficiency can indicate sleep disturbances and has been linked to increased risks of

depression, anxiety, and impaired memory function (Ohayon (2017)). Given the impor-

tance of sleep efficiency, understanding the factors that influence it is critical for both

research and clinical applications.

A major component of sleep efficiency is sleep macrostructure, which includes key sleep

parameters such as total recording time (TRT), total sleep time (TST), sleep onset latency

(SOL), wake after sleep onset (WASO), REM latency (REML), and the distribution of

sleep stages (N1, N2, N3, and REM sleep)(Berry (2012)). These parameters provide a

detailed framework for assessing sleep architecture and can help identify patterns that

influence sleep efficiency. Prior research has examined individual sleep macrostructure

parameters and their effects on overall sleep quality. For example, increased WASO and

prolonged SOL have been consistently linked to lower sleep efficiency (Spielman (1987)).

Additionally, disruptions in REM sleep have been associated with fragmented sleep and

poor restorative function (Carskadon (2001)). However, while these studies highlight the

significance of individual components, there is limited research analyzing the combined

influence of multiple sleep macrostructure parameters on sleep efficiency in healthy adults.

This study seeks to fill this gap by systematically evaluating the relationship be-

tween sleep macrostructure parameters and sleep efficiency using high-density polysomno-

graphic data from 29 healthy adults. By leveraging a well-defined dataset that includes

detailed sleep architecture metrics, I aim to identify key predictors of sleep efficiency

and assess their relative contributions. Unlike prior studies that focus on clinical pop-

ulations or sleep disorders, this research provides insights into sleep patterns in healthy

individuals, offering a baseline for future comparisons.

The remainder of this paper is organized as follows. Section 2 describes the data

sources, including the polysomnographic recordings and sleep scoring criteria. Section 3

outlines the methodology used to analyze the relationships between sleep macrostructure
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parameters and sleep efficiency. Section 4 presents the results of the statistical analyses.

Finally, Section 5 provides concluding remarks and directions for future research.

2 Data

This study utilizes a sleep dataset collected from 29 healthy adults at the Montreal Neu-

rological Institute. The dataset comprises polysomnographic recordings obtained through

overnight sleep studies, providing detailed insights into sleep architecture. Participants

included 13 females and 16 males, with an average age of 32.17 years (± 6.30 years). The

inclusion of a well-defined sample of healthy adults ensures that findings are not con-

founded by preexisting sleep disorders or medical conditions, making the dataset highly

relevant for investigating the relationship between sleep macrostructure parameters and

sleep efficiency.

Data collection was conducted using high-density scalp electroencephalograms (EEG)

with 83 electrodes, along with electrocardiogram (ECG), electromyogram (EMG), and

electrooculogram (EOG) recordings. EEGs measure brainwave activity during sleep,

providing insight into different sleep stages and brain states. ECGs monitor heart rate

and rhythm, which can reflect autonomic nervous system activity during sleep. EMGs

assess muscle tone, especially important for identifying REM sleep where muscle activity

is reduced. EOGs detect eye movements and are especially useful in identifying REM

sleep cycles. Sleep staging was manually annotated following the American Academy of

Sleep Medicine (AASM) guidelines, classifying sleep into different stages: N1, N2, N3,

and REM. This manual scoring enhances reliability and ensures consistency with clinical

standards, improving the validity of stage classification across participants. While stage

distributions were not significantly associated with SE in our analysis, their descriptive

profiles provide context for understanding overall sleep dynamics. Key variables include:

• Total Sleep Time (TST): minutes spent asleep

• Sleep Onset Latency (SOL): minutes to fall asleep

• Wake After Sleep Onset (WASO): minutes awake after falling asleep
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• REM Latency (REML): minutes from sleep onset to first REM stage

• Sleep Efficiency (SE): percent time asleep while in bed

To explore the dataset, summary statistics were computed for each sleep parameter.

Table 1 presents descriptive statistics, including means, standard deviations, and ranges

for key variables. TRT, TST, SE, N1, N2, N3, WASO time, and REM time exhibited

normal distributions, while SOL and REML time deviated from normality.

Table 1

Statistic Mean St. Dev. Min Max N

Age 32.172 6.297 20 44 29
TRT 417.207 46.565 293.000 508.500 29
TST..min. 340.621 59.008 155.500 453.000 29
SE....TRT. 81.517 10.105 53 96 29
SOL..min. 17.345 18.001 1.000 66.000 29
REML..min. 114.552 69.976 37.000 323.000 29
WASO.min. 59.241 37.744 10.500 141.500 29
N1..min. 41.483 12.442 20.500 66.500 29
N2..min. 170.241 44.669 68.500 254.500 29
N3.min. 76.728 17.404 48.600 108.000 29
R.min. 52.155 17.653 18.000 88.000 29

The dataset includes demographic and sleep-related variables. To analyze the rela-

tionship between sleep macrostructure and sleep efficiency, I employ regression modeling

and correlation analysis, assessing parameter influence through statistical significance

testing and effect size estimation. These methods enable a robust evaluation of sleep

efficiency determinants and their implications for sleep health.

Figures 1 and 2 provide a comprehensive visualization of the dataset. Figure 1 presents

histograms for each sleep parameter, illustrating variability across participants. Figure

2 displays a correlation matrix, highlighting relationships between key sleep parameters.

Notably, higher TST is associated with increased sleep efficiency, whereas prolonged

WASO and SOL are linked to lower sleep efficiency. The exact correlation matrix where

the numbers are calculated is in the Application section as Figure 5.

These findings provide a foundation for further statistical modeling to examine the
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Figure 1: Distribution of Sleep Parameters
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influence of sleep macrostructure on sleep efficiency. By leveraging this dataset’s high-

resolution sleep recordings and comprehensive annotations, this study aims to elucidate

key determinants of sleep efficiency and contribute to the broader field of sleep research.

3 Methods

This study explores the relationship between sleep macrostructure parameters and sleep

efficiency in healthy adults. The methodology employs linear regression models to es-

timate the effect of various sleep parameters on sleep efficiency, along with hypothesis

testing to assess the significance of these relationships. Below, I describe the key steps of

the analysis, including the statistical models, parameters to be estimated, and methods

used to assess uncertainty.

1. Notation and Observed Data

Let Yi represent the sleep efficiency (SE) of participant i, and let Xij denote the

observed sleep macrostructure parameters, where j indexes different variables such as

TST, SOL, REML, WASO, and the percentage of time spent in sleep stages N1, N2,

N3, and REM. The observed dataset consists of n = 29 independent observations:

(Yi, Xi1 , Xi2 , ..., Xip)
∏n

i=1, where p is the number of explanatory variables.

2. Model Specification

I model sleep efficiency as a function of sleep macrostructure parameters using a
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multiple linear regression framework:

Yi = β0 +

p∑
j=1

βjXij + ϵi, ϵi∼N(0, σ2) (1)

where β0 is the intercept, βj represents the effect of sleep parameter Xij on Yi, and

ϵi is an independent and identically distributed (i.i.d.) error term with mean zero and

variance σ2.

3. Parameter Estimation

The model parameters β = (β0, β1, ..., βp) are estimated using the ordinary least

squares (OLS) method, minimizing the residual sum of squares:

β̂ = argmin
n∑

i=1

(Yi − β0 −
p∑

j=1

βjXij)
2. (2)

The solution is obtained using the closed-form expression:

β̂ = (XTX)−1XTY, (3)

where X is the design matrix containing the observed predictors.

4. Standard Errors and Variance Estimation

The variance of the estimated coefficients is given by:

V ar(β̂) = σ2(XTX)−1. (4)

Since σ2 is unknown, it is estimated by the mean squared error (MSE) of the residuals:

σ2 =
1

n− p− 1

n∑
i=1

(Yi − Ŷi)
2. (5)

The standard errors (SE) of the coefficients are obtained as:

SE(β̂j) =
√

σ2(XTX)−1
jj (6)
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5. Hypothesis Testing and Null Distributions

To assess the significance of each predictor, I conducted hypothesis tests for βj:

H0 : βj = 0 (7)

Ha : βj ̸= 0 (8)

The test statistic follows a t-distribution:

Tj =
β̂j

SE(β̂j)
∼t(n− p− 1). (9)

Under the null hypothesis, TJ follows a t-distribution with n−p−1 degrees of freedom,

allowing us to compute p-values and determine statistical significance. This notation TJ

explicitly refers to the test statistic used in inference and should not be confused with

time variables such as TST or TRT.

6. Assumptions and Theoretical Claims For valid inference, the following as-

sumptions are made:

• Linearity: The relationship between predictors and response is linear.

• Independence: Observations are independent.

• Homoscedasticity: Error variance σ2 is constant across observations.

• Normality: Errors follow a normal distribution.

Violations of these assumptions are checked through residual analysis, variance infla-

tion factors (VIF) for multicollinearity, and transformations if needed. This method-

ological framework provides a rigorous approach to evaluating the influence of sleep

macrostructure on sleep efficiency.
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4 Results & Discussion

This study examined the relationship between sleep macrostructure parameters and sleep

efficiency in healthy adults. The results of the regression analysis provide key insights

into the determinants of sleep efficiency, highlighting the relative influence of various sleep

macrostructure parameters. My findings indicate that total sleep time (TST), sleep onset

latency (SOL), and wake after sleep onset (WASO) are the most significant predictors of

sleep efficiency (p < 0.001). TST exhibits a strong positive relationship with sleep effi-

ciency (β = 0.9988, p < 2e−16), confirming that longer total sleep duration contributes

to greater sleep efficiency. In contrast, both SOL (β = -1.0008, p < 2e−16) and WASO

(β = -0.9999, p < 2e−16) demonstrate strong negative associations with sleep efficiency,

suggesting that delayed sleep onset and fragmented sleep significantly reduce overall sleep

quality. Interestingly, other sleep parameters, including REM latency (REML), and time

spent in different sleep stages (N1, N2, and N3), did not show statistically significant asso-

ciations with sleep efficiency. The lack of significance in REML and sleep stage durations

may reflect limited variability in healthy populations or their lesser role in determining

sleep efficiency compared to sleep continuity metrics. This indicates that while sleep

architecture plays a role in overall sleep dynamics, sleep efficiency is predominantly de-

termined by total sleep duration and disruptions in sleep continuity rather than specific

sleep stage distributions.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.5134912 0.3012504 1.705 0.103
TST 0.9987742 0.0024936 400.537 <2e-16 ***
SOL -1.0008461 0.0020737 -482.639 <2e-16 ***
REML 0.0003336 0.0005869 0.568 0.576
WASO -0.9999314 0.0017865 -559.701 <2e-16 ***
N1 -0.0007505 0.0046595 -0.162 0.873
N2 0.0010302 0.0024925 0.413 0.684
N3 -0.0022668 0.0026643 -0.851 0.404

Table 2: Results of the Linear Regression

Table 2 describes the results of the linear regression. All variables were retained in

their original measurement units (e.g., minutes for TST, SOL, WASO, and REML; per-
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centage for SE), and no standardization or transformation was applied prior to regression

analysis. While the regression coefficients appear close to ±1 or 0, this reflects the natural

scale and strength of linear associations rather than standardized effects. Standardizing

variables could be considered in future studies to compare relative effect sizes.

To ensure the robustness of the regression model, I conducted diagnostic checks, in-

cluding normality of residuals, homoscedasticity, and multicollinearity assessments (Fig-

ure 4).

• QQ Plot (Normality of Residuals): The Q-Q plot suggests that residuals are

approximately normally distributed, with minor deviations in the tails. These find-

ings suggest that the linear model assumptions are reasonably met, though slight

non-normality may exist due to potential outliers or unmodeled interactions (Figure

5).

• Residual vs. Fitted Plot (Homoscedasticity Check): The residual plot does

not exhibit clear patterns, suggesting that the assumption of homoscedasticity (con-

stant variance of errors) is satisfied. This means the variability of errors remains

consistent across different fitted values. (Figure 6)

• Multicollinearity Check (VIF Test): Variance inflation factors (VIFs) were

computed to assess collinearity among predictors. Initially, Sex and Age exhibited

high collinearity with other predictors, leading to their removal from the model.

After exclusion, all remaining predictors had VIF values below 5, which is commonly
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Figure 7: Correlation Values

considered an acceptable threshold, indicating no severe multicollinearity (Table 3).

TST TRT SOL WASO REML
2.791647e-05 2.012621e-04 4.177207e-04 1.832320e-05 2.810279e-00

REM N1 N2 N3
4.013968e-04 1.996953e-04 2.570470e-05 3.914791e-04

Table 3: VIF Factors (after removing Sex and Age).

These diagnostics confirm that the linear regression model is statistically sound and

suitable for interpreting the effects of sleep macrostructure parameters on sleep efficiency.

These findings align with existing literature, where reduced WASO and shorter SOL

have been associated with better sleep quality and daytime functioning. However, this

study adds specificity to these relationships by quantifying their effects within a controlled

sample of healthy adults. This has practical implications for clinical treatment, as ad-

dressing factors that minimize WASO and SOL can significantly enhance sleep efficiency.

The results underscore the importance of interventions that target sleep continuity and
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duration. Behavioral therapies such as relaxation techniques, and sleep hygiene practices

can help individuals experiencing prolonged SOL and WASO, thereby improving sleep

efficiency. Additionally, the findings highlight the potential for improving public health

and workplace productivity through education and policy changes promoting better sleep

habits.

5 Conclusion

The findings from this study have significant applications in both clinical and everyday

contexts. Understanding how sleep macrostructure parameters influence sleep efficiency

allows for targeted interventions to improve sleep health. The results, illustrated in

the figures above, demonstrate that total sleep time (TST) positively correlates with

sleep efficiency, whereas prolonged sleep onset latency (SOL) and wake after sleep onset

(WASO) negatively impact sleep efficiency.The positive coefficient for TST suggests that

every additional minute of sleep significantly improves sleep efficiency, reinforcing the

importance of sufficient sleep duration. Conversely, the negative coefficients for SOL and

WASO indicate that prolonged time taken to fall asleep or increased awakenings during

the night reduce sleep efficiency.

These insights have diverse applications. Clinicians can leverage them to design per-

sonalized treatment plans for individuals experiencing sleep disturbances, emphasizing the

importance of increasing TST and minimizing WASO through other behavioral interven-
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tions. Algorithms used in smartwatches and fitness bands can integrate these findings

to provide more accurate and actionable feedback, emphasizing not just total sleep time,

but also the quality and continuity of sleep. In workplace and educational settings, these

insights may inform wellness programs or policy decisions—such as flexible scheduling or

sleep education campaigns—that aim to improve productivity and health outcomes by

promoting consistent and efficient sleep habits. Moreover, recognizing the roles of TST,

SOL, and WASO can help researchers develop predictive models that flag individuals at

risk of inefficient sleep before clinical symptoms emerge.

Despite its contributions, this study has several limitations:

• Small Sample Size (N=29): A larger dataset would enhance generalizability

and improve the reliability of the regression model.

• Healthy Adult Sample: The study exclusively examined healthy adults, meaning

the results may not extend to individuals with sleep disorders, older adults, or

children.

• Unmeasured Confounders: While polysomnographic data provides precise sleep

measurements, lifestyle factors such as stress, caffeine intake, and physical activity

were not accounted for, potentially influencing sleep efficiency.

Future research should expand the sample size and include diverse populations to

enhance the generalizability of the findings. Longitudinal studies tracking sleep efficiency

changes over time and assessing the effects of specific interventions would provide deeper

insights. Additionally, integrating objective lifestyle and environmental factors, such as

physical activity, diet, and stress levels, could offer a more holistic understanding of sleep

efficiency determinants. Lastly, utilizing wearable sleep-tracking technology to validate

these findings in real-world settings could further refine recommendations for improving

sleep health.

In summary, this study provides valuable insights into the relationship between sleep

macrostructure parameters and sleep efficiency in healthy adults. The results reinforce

that adequate sleep duration and minimal interruptions are key to achieving higher sleep
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efficiency. These findings contribute to both clinical and technological advancements in

sleep monitoring and intervention, offering a foundation for future research and applica-

tion in sleep medicine.
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