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Abstract

Sleep efficiency (SE) is a critical indicator of sleep quality and is associated
with various health outcomes, including cognitive performance and mood regula-
tion. This study investigates the relationship between sleep macrostructure param-
eters—total sleep time (TST), sleep onset latency (SOL), wake after sleep onset
(WASO), and rapid eye movement latency (REML)—and SE in a sample of 29
healthy adults. Using high-density polysomnographic data, we identified key pre-
dictors of SE through multiple regression analysis. The results indicate that TST
is positively associated with SE (r = 0.76, p < 0.05), while both SOL (r = -0.33, p
< 0.05) and WASO (r =-0.73, p < 0.05) are negatively correlated with SE. REML,
however, did not show a significant relationship with SE. Regression diagnostics,
including variance inflation factor (VIF) analysis and Q-Q plots, supported the va-
lidity of the model, with no severe multicollinearity detected after removing highly
correlated predictors (Sex and Age). This research enhances the understanding of
the key determinants of sleep efficiency in healthy adults and provides a foundation
for future studies examining clinical populations. The findings have implications
for sleep medicine, behavioral interventions, and the development of personalized
sleep improvement strategies.
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1 Introduction

Sleep is a fundamental biological process that plays a crucial role in cognitive function,
physical health, and overall well-being. One of the key measures of sleep quality is sleep

efficiency (SE), which represents the proportion of total time spent asleep relative to the



total time spent in bed. High sleep efficiency is associated with better cognitive perfor-
mance, improved mood regulation, and lower risks of various health conditions, including
cardiovascular diseases and metabolic disorders (Hirshkowitz (2015))). Conversely, low
sleep efficiency can indicate sleep disturbances and has been linked to increased risks of
depression, anxiety, and impaired memory function (Ohayon| (2017))). Given the impor-
tance of sleep efficiency, understanding the factors that influence it is critical for both
research and clinical applications.

A major component of sleep efficiency is sleep macrostructure, which includes key sleep
parameters such as total recording time (TRT), total sleep time (TST), sleep onset latency
(SOL), wake after sleep onset (WASO), REM latency (REML), and the distribution of
sleep stages (N1, N2, N3, and REM sleep)(Berry| (2012)). These parameters provide a
detailed framework for assessing sleep architecture and can help identify patterns that
influence sleep efficiency. Prior research has examined individual sleep macrostructure
parameters and their effects on overall sleep quality. For example, increased WASO and
prolonged SOL have been consistently linked to lower sleep efficiency (Spielman (1987))).
Additionally, disruptions in REM sleep have been associated with fragmented sleep and
poor restorative function (Carskadon| (2001)). However, while these studies highlight the
significance of individual components, there is limited research analyzing the combined
influence of multiple sleep macrostructure parameters on sleep efficiency in healthy adults.

This study seeks to fill this gap by systematically evaluating the relationship be-
tween sleep macrostructure parameters and sleep efficiency using high-density polysomno-
graphic data from 29 healthy adults. By leveraging a well-defined dataset that includes
detailed sleep architecture metrics, I aim to identify key predictors of sleep efficiency
and assess their relative contributions. Unlike prior studies that focus on clinical pop-
ulations or sleep disorders, this research provides insights into sleep patterns in healthy
individuals, offering a baseline for future comparisons.

The remainder of this paper is organized as follows. Section 2 describes the data
sources, including the polysomnographic recordings and sleep scoring criteria. Section 3

outlines the methodology used to analyze the relationships between sleep macrostructure



parameters and sleep efficiency. Section 4 presents the results of the statistical analyses.

Finally, Section 5 provides concluding remarks and directions for future research.

2 Data

This study utilizes a sleep dataset collected from 29 healthy adults at the Montreal Neu-
rological Institute. The dataset comprises polysomnographic recordings obtained through
overnight sleep studies, providing detailed insights into sleep architecture. Participants
included 13 females and 16 males, with an average age of 32.17 years (4 6.30 years). The
inclusion of a well-defined sample of healthy adults ensures that findings are not con-
founded by preexisting sleep disorders or medical conditions, making the dataset highly
relevant for investigating the relationship between sleep macrostructure parameters and
sleep efficiency.

Data collection was conducted using high-density scalp electroencephalograms (EEG)
with 83 electrodes, along with electrocardiogram (ECG), electromyogram (EMG), and
electrooculogram (EOG) recordings. EEGs measure brainwave activity during sleep,
providing insight into different sleep stages and brain states. ECGs monitor heart rate
and rhythm, which can reflect autonomic nervous system activity during sleep. EMGs
assess muscle tone, especially important for identifying REM sleep where muscle activity
is reduced. EOGs detect eye movements and are especially useful in identifying REM
sleep cycles. Sleep staging was manually annotated following the American Academy of
Sleep Medicine (AASM) guidelines, classifying sleep into different stages: N1, N2, N3,
and REM. This manual scoring enhances reliability and ensures consistency with clinical
standards, improving the validity of stage classification across participants. While stage
distributions were not significantly associated with SE in our analysis, their descriptive

profiles provide context for understanding overall sleep dynamics. Key variables include:
e Total Sleep Time (TST): minutes spent asleep
e Sleep Onset Latency (SOL): minutes to fall asleep

e Wake After Sleep Onset (WASO): minutes awake after falling asleep
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e REM Latency (REML): minutes from sleep onset to first REM stage
e Sleep Efficiency (SE): percent time asleep while in bed

To explore the dataset, summary statistics were computed for each sleep parameter.
Table 1 presents descriptive statistics, including means, standard deviations, and ranges
for key variables. TRT, TST, SE, N1, N2, N3, WASO time, and REM time exhibited

normal distributions, while SOL and REML time deviated from normality.

Table 1
Statistic Mean St. Dev. Min Max N
Age 32.172 6.297 20 44 29
TRT 417.207 46.565 293.000 508.500 29
TST..min. 340.621 59.008 155.500 453.000 29
SE....TRT. 81.517 10.105 53 96 29
SOL..min. 17.345 18.001 1.000 66.000 29

REML..min.  114.552 69.976 37.000  323.000 29
WASO.min. 59.241 37.744 10.500  141.500 29

N1..min. 41.483 12.442 20.500 66.500 29
N2..min. 170.241 44.669 68.500  254.500 29
N3.min. 76.728 17.404 48.600  108.000 29
R.min. 52.155 17.653 18.000 88.000 29

The dataset includes demographic and sleep-related variables. To analyze the rela-
tionship between sleep macrostructure and sleep efficiency, I employ regression modeling
and correlation analysis, assessing parameter influence through statistical significance
testing and effect size estimation. These methods enable a robust evaluation of sleep
efficiency determinants and their implications for sleep health.

Figures 1 and 2 provide a comprehensive visualization of the dataset. Figure 1 presents
histograms for each sleep parameter, illustrating variability across participants. Figure
2 displays a correlation matrix, highlighting relationships between key sleep parameters.
Notably, higher TST is associated with increased sleep efficiency, whereas prolonged
WASO and SOL are linked to lower sleep efficiency. The exact correlation matrix where
the numbers are calculated is in the Application section as Figure 5.

These findings provide a foundation for further statistical modeling to examine the
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Figure 4: Regression Coefficient Estimates

influence of sleep macrostructure on sleep efficiency. By leveraging this dataset’s high-
resolution sleep recordings and comprehensive annotations, this study aims to elucidate

key determinants of sleep efficiency and contribute to the broader field of sleep research.

3 Methods

This study explores the relationship between sleep macrostructure parameters and sleep
efficiency in healthy adults. The methodology employs linear regression models to es-
timate the effect of various sleep parameters on sleep efficiency, along with hypothesis
testing to assess the significance of these relationships. Below, I describe the key steps of
the analysis, including the statistical models, parameters to be estimated, and methods
used to assess uncertainty.

1. Notation and Observed Data

Let Y; represent the sleep efficiency (SE) of participant i, and let X;j denote the
observed sleep macrostructure parameters, where j indexes different variables such as
TST, SOL, REML, WASO, and the percentage of time spent in sleep stages N1, N2,
N3, and REM. The observed dataset consists of n = 29 independent observations:
(Yi, Xy, Xi

, X;p) [~ where p is the number of explanatory variables.
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2. Model Specification

I model sleep efficiency as a function of sleep macrostructure parameters using a



multiple linear regression framework:

p
Y= b0+ Z B Xi,; + €, ei~N (0, o?) (1)

Jj=1

where [ is the intercept, [3; represents the effect of sleep parameter X;, on Y;, and
¢; is an independent and identically distributed (i.i.d.) error term with mean zero and
variance o2,

3. Parameter Estimation

The model parameters 8 = (S, b1, ..., Bp) are estimated using the ordinary least

squares (OLS) method, minimizing the residual sum of squares:
N n P
p = argmin Z(Y; — Bo — Z B Xi;)?. (2)
i=1 j=1
The solution is obtained using the closed-form expression:
f=(xTX)7XTY, (3)

where X is the design matrix containing the observed predictors.
4. Standard Errors and Variance Estimation

The variance of the estimated coefficients is given by:
Var(8) = oc*(XTX)™1, (4)
Since o2 is unknown, it is estimated by the mean squared error (MSE) of the residuals:

T A )

:n—p—l —

The standard errors (SE) of the coefficients are obtained as:

SE(f;) = \/o(XTX)j} (6)



5. Hypothesis Testing and Null Distributions

To assess the significance of each predictor, I conducted hypothesis tests for j3;:
H(] : Bj =0 (7)

Ha:ﬁj#o (8)

The test statistic follows a ¢-distribution:

_ b

= SE) ~t(n—p—1). 9)

J

Under the null hypothesis, T’y follows a ¢t-distribution with n—p—1 degrees of freedom,

allowing us to compute p-values and determine statistical significance. This notation T

explicitly refers to the test statistic used in inference and should not be confused with
time variables such as TST or TRT.

6. Assumptions and Theoretical Claims For valid inference, the following as-

sumptions are made:
e Linearity: The relationship between predictors and response is linear.
e Independence: Observations are independent.
e Homoscedasticity: Error variance o2 is constant across observations.
e Normality: Errors follow a normal distribution.

Violations of these assumptions are checked through residual analysis, variance infla-
tion factors (VIF) for multicollinearity, and transformations if needed. This method-
ological framework provides a rigorous approach to evaluating the influence of sleep

macrostructure on sleep efficiency.



4 Results & Discussion

This study examined the relationship between sleep macrostructure parameters and sleep
efficiency in healthy adults. The results of the regression analysis provide key insights
into the determinants of sleep efficiency, highlighting the relative influence of various sleep
macrostructure parameters. My findings indicate that total sleep time (T'ST), sleep onset
latency (SOL), and wake after sleep onset (WASO) are the most significant predictors of
sleep efficiency (p < 0.001). TST exhibits a strong positive relationship with sleep effi-
ciency (5 = 0.9988, p < 2e~16), confirming that longer total sleep duration contributes
to greater sleep efficiency. In contrast, both SOL (5 = -1.0008, p < 2¢~16) and WASO
(8 =-0.9999, p < 2e16) demonstrate strong negative associations with sleep efficiency,
suggesting that delayed sleep onset and fragmented sleep significantly reduce overall sleep
quality. Interestingly, other sleep parameters, including REM latency (REML), and time
spent in different sleep stages (N1, N2, and N3), did not show statistically significant asso-
ciations with sleep efficiency. The lack of significance in REML and sleep stage durations
may reflect limited variability in healthy populations or their lesser role in determining
sleep efficiency compared to sleep continuity metrics. This indicates that while sleep
architecture plays a role in overall sleep dynamics, sleep efficiency is predominantly de-
termined by total sleep duration and disruptions in sleep continuity rather than specific

sleep stage distributions.

Estimate  Std. Error t value  Pr(> |t|)

(Intercept) 0.5134912  0.3012504 1.705 0.103
TST 0.9987742  0.0024936  400.537 <2e-16 ***
SOL -1.0008461  0.0020737 -482.639 <2e-16 ***
REML 0.0003336  0.0005869 0.568 0.576
WASO -0.9999314  0.0017865 -559.701 <2e-16 ***
N1 -0.0007505  0.0046595  -0.162 0.873
N2 0.0010302  0.0024925 0.413 0.684
N3 -0.0022668  0.0026643  -0.851 0.404

Table 2: Results of the Linear Regression

Table 2 describes the results of the linear regression. All variables were retained in

their original measurement units (e.g., minutes for TST, SOL, WASO, and REML; per-
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Figure 5: QQ Plot

centage for SE), and no standardization or transformation was applied prior to regression
analysis. While the regression coefficients appear close to +1 or 0, this reflects the natural
scale and strength of linear associations rather than standardized effects. Standardizing
variables could be considered in future studies to compare relative effect sizes.

To ensure the robustness of the regression model, I conducted diagnostic checks, in-
cluding normality of residuals, homoscedasticity, and multicollinearity assessments (Fig-

ure 4).

e QQ Plot (Normality of Residuals): The Q-Q plot suggests that residuals are
approximately normally distributed, with minor deviations in the tails. These find-
ings suggest that the linear model assumptions are reasonably met, though slight

non-normality may exist due to potential outliers or unmodeled interactions (Figure

).

e Residual vs. Fitted Plot (Homoscedasticity Check): The residual plot does
not exhibit clear patterns, suggesting that the assumption of homoscedasticity (con-
stant variance of errors) is satisfied. This means the variability of errors remains

consistent across different fitted values. (Figure 6)

e Multicollinearity Check (VIF Test): Variance inflation factors (VIFs) were
computed to assess collinearity among predictors. Initially, Sex and Age exhibited
high collinearity with other predictors, leading to their removal from the model.

After exclusion, all remaining predictors had VIF values below 5, which is commonly
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Figure 6: Residual vs Fitted Values Plot

© TST soL REML WASO N1 N2 N3 SE

TST 1.0000000 -0.19354336 0.2862419 0.1409560 0.54342027 0.66722754 0.05881930 0.7576062
SOL -0.1935434 1.00000000 0.1143642 -0.1929674 0.05926714 -0.32816402 -0.04550501 -0.3346243
REML  0.2862419 0.11436421 1.0000000 0.5974354 0.28708808 -0.24885077 -0.28588818 -0.1910851
WASO  0.1409560 -0.19296739 0.5974354 1.0000000 0.21423889 -0.42991911 -0.31045058 -0.4695150
N1 0.5434203 0.05926714 0.2870881 0.2142389 1.00000000 0.05159210 -0.31058668 0.2733840
N2 0.6672275 -0.32816402 -0.2488508 -0.4299191 0.05159210 1.00000000 0.08939705 0.9016667
N3 0.0588193 -0.04550501 -0.2858882 -0.3104506 -0.31058668 0.08939705 1.00000000 0.2581543
SE 0.7576062 -0.33462426 -0.1910851 -0.4695150 0.27338397 0.90166668 0.25815425 1.0000000

Figure 7: Correlation Values

considered an acceptable threshold, indicating no severe multicollinearity (Table 3).

TST TRT SOL WASO REML
2.791647e-05 2.012621e-04 4.177207e-04 1.832320e-05 2.810279e-00
REM N1 N2 N3

4.013968e-04  1.996953e-04  2.570470e-05 3.914791e-04

Table 3: VIF Factors (after removing Sex and Age).

These diagnostics confirm that the linear regression model is statistically sound and

suitable for interpreting the effects of sleep macrostructure parameters on sleep efficiency.

These findings align with existing literature, where reduced WASO and shorter SOL

have been associated with better sleep quality and daytime functioning. However, this

study adds specificity to these relationships by quantifying their effects within a controlled

sample of healthy adults. This has practical implications for clinical treatment, as ad-

dressing factors that minimize WASO and SOL can significantly enhance sleep efficiency.

The results underscore the importance of interventions that target sleep continuity and
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Figure 8: Regression Diagnostics

duration. Behavioral therapies such as relaxation techniques, and sleep hygiene practices
can help individuals experiencing prolonged SOL and WASO, thereby improving sleep
efficiency. Additionally, the findings highlight the potential for improving public health
and workplace productivity through education and policy changes promoting better sleep

habits.

5 Conclusion

The findings from this study have significant applications in both clinical and everyday
contexts. Understanding how sleep macrostructure parameters influence sleep efficiency
allows for targeted interventions to improve sleep health. The results, illustrated in
the figures above, demonstrate that total sleep time (TST) positively correlates with
sleep efficiency, whereas prolonged sleep onset latency (SOL) and wake after sleep onset
(WASO) negatively impact sleep efficiency.The positive coefficient for TST suggests that
every additional minute of sleep significantly improves sleep efficiency, reinforcing the
importance of sufficient sleep duration. Conversely, the negative coefficients for SOL and
WASO indicate that prolonged time taken to fall asleep or increased awakenings during
the night reduce sleep efficiency.

These insights have diverse applications. Clinicians can leverage them to design per-
sonalized treatment plans for individuals experiencing sleep disturbances, emphasizing the

importance of increasing TST and minimizing WASO through other behavioral interven-
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tions. Algorithms used in smartwatches and fitness bands can integrate these findings
to provide more accurate and actionable feedback, emphasizing not just total sleep time,
but also the quality and continuity of sleep. In workplace and educational settings, these
insights may inform wellness programs or policy decisions—such as flexible scheduling or
sleep education campaigns—that aim to improve productivity and health outcomes by
promoting consistent and efficient sleep habits. Moreover, recognizing the roles of TST,
SOL, and WASO can help researchers develop predictive models that flag individuals at
risk of inefficient sleep before clinical symptoms emerge.

Despite its contributions, this study has several limitations:

e Small Sample Size (N=29): A larger dataset would enhance generalizability

and improve the reliability of the regression model.

e Healthy Adult Sample: The study exclusively examined healthy adults, meaning
the results may not extend to individuals with sleep disorders, older adults, or

children.

e Unmeasured Confounders: While polysomnographic data provides precise sleep
measurements, lifestyle factors such as stress, caffeine intake, and physical activity

were not accounted for, potentially influencing sleep efficiency.

Future research should expand the sample size and include diverse populations to
enhance the generalizability of the findings. Longitudinal studies tracking sleep efficiency
changes over time and assessing the effects of specific interventions would provide deeper
insights. Additionally, integrating objective lifestyle and environmental factors, such as
physical activity, diet, and stress levels, could offer a more holistic understanding of sleep
efficiency determinants. Lastly, utilizing wearable sleep-tracking technology to validate
these findings in real-world settings could further refine recommendations for improving
sleep health.

In summary, this study provides valuable insights into the relationship between sleep
macrostructure parameters and sleep efficiency in healthy adults. The results reinforce

that adequate sleep duration and minimal interruptions are key to achieving higher sleep

13



efficiency. These findings contribute to both clinical and technological advancements in
sleep monitoring and intervention, offering a foundation for future research and applica-

tion in sleep medicine.
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